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I. NUMERICAL ANALYSIS 
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A numerical analysis is carried out of the kinetics of nonlinear mass transfer 
between a gas and a falling liquid film. The nonlinear effect which is con- 
sidered is the result of intensive mass transfer. Under these conditions the 
large mass flux induces a secondary flow at the phase interface. The mass 
transport in both phases takes into account the influence of the intensive 
mass transfer on the hydrodynamic behavior. An equation is obtained for the 
rate of absorption is greater than the rate of desorption under conditions of 
intensive mass transfer. 

Theoretical investigations of mass transport in two-phase systems with intensive ~nass 
transfer between the phases have shown [I, 2] that large mass fluxes through the phase in- 
terface induce secondary flows. The velocity of such secondary flows (normal to the inter- 
facial surface) is the reason for the appearance of nonlinear effects in the kinetics )f 
mass transport. 

The analysis of nonlinear mass transport in falling liquid films [3, 4] (with chemical 
reactions in the liquid) has shown that the nonlinear effects occur only at large pres~ures. 
At small pressures, the effect of the secondary flow cannot be kept track of, and there 
remain only the nonlinear effects arising because of the concentration dependence of the 
diffusion coefficients. This is explained by the fact that the velocity of the secondary 
flow increases due to the intensification of the mass transfer as a result of the increase 
in the rate of the chemical reaction in the liquid. On the other hand, the increase in 
the rate of the chemical reaction leads to a decrease in the contribution of the convective 
transport to the overall rate of mass transport [5, 6], and at large rates the hydrodynamics 
have no influence on the rate of mass transport. Thus, the chemical reaction in the l:Lquid 
phase intensifies mass transfer and causes the secondary flow, but this flow (like the basic 
flow) does not have an influence on mass transport in the liquid. 

Theoretical investigations of nonlinear mass transport in gas-liquid systems have shown 
[7, 8] that in practice the nonlinear effects are significant when the mass transfer ~rocess 
is limited by the mass transport in the gas phase. In the case where the diffusional resist- 
ances are comparable in both phases, the nonlinear effects are appreciably reduced, and 
when the process is limited by the diffusional resistance in the liquid they practically 
disappear (at normal pressures). 

A review of work on the kinetics of nonlinear mass transport in two-phase systems with 
intensive mass transfer indicates the considerable importance of the problem of setting up 
a theory of nonlinear mass transfer between gases and falling liquid films in cases where 
the process is limited by mass transport in the gas phase, and this is the objective of 
the present paper. On this basis attempts are made to explain the differences in the rates 
of mass transport which are observed experimentally during the absorption and desorption 
of very soluble gases. 

Mathematica! Description. Nonlinear mass transfer between a gas and a falling liquid 
film during the absorption and desorption of the gas can be described using the equations 
of motion and the convective diffusion in the liquid and the gas. The form of the surface 
of the film is obtained from the equation for the macroscopic balance for the liquid in 
the film, i.e., from the condition for the "nonpassage" of the liquid through the surface 
of the film. In the case of intensive mass transfer it is necessary to introduce the velocity 
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of the secondary flow as a function of the mass flux. The velocity of the secondary flow 
is a velocity component normal to the interfacial surface. Thus, the dependence of the 
velocity of the secondary flow on the mass flux expresses the condition of "passage" through 
the interfacial boundary as a result of the intensive mass transfer. 

Theoretical and experimental investigations [i, 2] show that the flow of a liquid film 
on a vertical surface can be described with sufficient accuracy by the equations of motion 
to the zeroth approximation with respect to the small parameter (h0/s 2 (which will be ob- 
served below and in all the remaining equations): 

0 z u Ou Ov 
" ~ ' - -  + g  = O, + = 0 .  ( Z )  

O y z -~x O g 

The boundary conditions for the system (i) express the "adherence" of the liquid on 
the solid surface at y = 0 and the continuity of the stress tensor at the phase interface 
at y = h: 

g=O, u=O, v=O, 

au a'. (2) y=h, ~y oy 

The film thickness is determined [i, 2] from the condition for "passage" through the 
phase boundary, i.e., from the macroscopic balance for the liquid in the film taking into 
account the secondary flow [3] as a result of the intensive mass transfer from the gas: 

M D  ac 
y = h ,  h ' u - - v = - - - -  (3) 

dv 

Changes in the film thickness are the result of changes in the liquid velocity over 
the length of the film. This leads to the need to introduce into the boundary condition for 
the velocity the thickness over the length of the film. A theoretical analysis of film 
flow has shown [i, 2, 9] that all the effects become rapidly attenuated because of the 
small thickness of the film, and that at some distance s from the inlet of the film asymp- 
totic flow is found, i.e., the velocity of the flow no longer depends on the longitudinal 
coordinate. This provides the basis for using 

0u 
x -+ l~,  - -  -+ 0, h "-+ ho (4) 

Ox 

as a boundary condition for Eqs. (i) and (3). 

In order to determine the concentration of th~ material being absorbed (desorbed) in 
Eq. (3) it is necessary to solve the equation of convective diffusion in the liquid. In 
practice the thickness of the diffusional boundary layer in the liquid is always smaller 
than the thickness of the film, so that it is possible to use the boundary layer approxima- 

tion: 

ac Oc 0 = c 
. . . . .  D - -  (5.) 

u ax + v Og Oy z 

with boundary conditions which take into account the impermeability of the solid wall and 
the continuity of the mass flux through the phase boundary, where the mass flux has a convec- 
tive component asa result of the secondary flow: 

x=O C = C o ;  

ac 
y = 0 a g  - o; 

( 6 )  
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y : h Dg* Oo ~- DO* Oc 
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and where at ordinary pressures p*/p $ ~i 

Theoretical analyses of the simultaneous flow of the gas and the liquid film [i, 2, 
show that the flow of the gas can be described using the boundary layer approximation: 

10] 

O-u oh a~5 aTz av  (7)  
~Z + ~ v ~ = v  av ~ , ax + av = ~  

The boundary conditions for Eq. (7) express the continuity of the velocity at the phase 
interface and the potential motion of the gas beyond the boundary layer: 

X : ~  0 U ~ d o ;  

V---h ~=u, ~v=v; 

V-+ oo 7~=~o. 

(8)  

In gases the thicknesses of the laminar, and diffusional boundary layers have the ~ame 
order of magnitude, and for describing the mass transport in the gas phase it is possible 
to use an analogous approximation 

a~ a~ a27 (9)  
--b-f + 6 =~-- -~ Or2 

with boundary conditions expressing the thermodynamic equilibrium at the phase interface 
and the constancy of the concentration beyond the boundary layer: 

x =  0 c =  Co; 

y ---- h c = %c; 

t j - - + o o  c ~  c o . 

(10) 

Intensive mass transfer between the gas and liquid induces secondary flow [I, 2, 7], 
and its velocity Vn (to the approximation indicated above) can be expressed in terms of 
the mass flux through the phase interface: 

Equation (Ii) expresses the effect of mass transport on the hydrodynamics, and provides 
the reason for the appearance of nonlinearity in the left side of Eq. (9), i.e., Eq. (I[) 
is the basis for calculating the nonlinear mass transport under conditions of intensive 
mass transfer. 

The Kinetics of Mass Transport. In the case being considered the rate of mass transfer 
between the gas and the liquid is determined by the kinetics of the nonlinear mass transport 
in the gas phase. This rate can be determined by averaging the mass flux over the length 
s of the film: 

t 

+ii d = Mk(co - -  %co) ---- dx, 
0 

(12) 
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Fig. l. The dimensionless velocity (~'), con- 
centration (~), and diffusion flux (~') in the 
diffusion boundary layer in the gas (e = i) for 
e z = 0.07 and various values of e: i): 8 = -0.3; 
2 ) :  O = - 0 . 2 ;  3)  O = - 0 . 1 ;  4 )  O = 0 ;  5 ) :  O = 0 . 1 ;  

6 )  0 = 0 . 2 ;  7)  0 = 0 . 3 .  

where the local mass flux has a diffusional and a convective component 

7 = _  ( ) . \ dv, ~=h + MXco [~(x, h) - -  

- h ' .  (~, h)] = ~ ,,=. 

(13) 

The expressions (12) and (13) make it possible to determine the Sherwood number after 
solving Eqs. (i)-(ii): 

S-h=  - -~-__ .'~ _ dx. 
D O~ Co--%Co o y=h 

(14) 

Method of Solution. In order to solve the system of equations (i)-(ii) it is necessary 
to introduce the following dimensionless variables: 

where 

x ~ F =  v - - h  h 
X = - - I - ,  Y =  ho ' ~ ' H ( X ) = ~ o '  

_ _ ,  y)  , C(X, Y ) =  , (15)  U ( X ,  Y ) =  u V(X,  = v C--Co 
Uo ~o Uo C'o/Z - -  Co 

0 (x, f )  = ~" ~ (x, ,2) = ~ t (x, ~/) -- ~ ' -  xco 
Uo goUo s ~ ~CO 
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ho gho - 8 . 8 = 
% = - T ;  Uo=  3v ; % - -  l ' 

Dl  

/ rio (16)  

In this 

where 

way it is found that 

H'u(x, 

0 2 U OU OV 
3, --+-- 

Oy z OX a Y  

Y = O ,  u = o ,  V = O ;  

Y - - H ,  OU Oo ( O U _ ~  I 

OY ~ \ OY j g=0 

OU 
X--',-L~, - --* O; 

a x  

= O; 

O C )  . 
,v) = v ( x ,  H) + o4 7 7 -  ~=.' 

X -+- Loo,  H - + I ;  

U OC + V  ac  - - F o  02C . 
a x  dY OY 2 

X = O ,  C = O ;  

ac 
Y = O ,  -- O; 

OY 

r- -H,  ec o ( ) . 
oF , g=o 

[I  ar + p..a(~ = %c a=O + 6oH'O aO 
ox or o f f  o T '  

aO a~/ agJ 
a x  ~ a 9  =6~ oF ; 

X=O, 0 = 1 ;  

P = o, ( / =  o~u (x, ~/), P = -o~ oC 
of, 

P--,-~, D =  I; 

0 a~ + p ae a~ - -  ~ = - -  + 6 o H ' U - -  
a x  a Y  OF ~ 

x = o ,  c = ! ;  

2 = o ,  ~ = o ;  

yl..-, oo, 6 ' = I ,  

, 6 H ' &  

aC 
a P '  

L oo l .  6o ho Fo DI . Sc v ~ ;  ~ - - ;  _~ ~ ,  ~ . ; 
l 5 uoho D 

O1 uo ~ o  ; M = - . . , . - ;  O ~ =  O a =  ~ (Co--%Co);  
Uo ~ Po 

o4 = M D  (70 - ZOo) ~oz~,%* 
%uohopYZ ; 13 = Dg?  

(17) 

(!8) 

(19~ 

(20) 

(21) 

( 2 2 )  

893 



The parameter 03 determines the direction of mass transfer [12]. In the case of absorp- 
tion, 93 > 0, while for desorption, B 3 < 0. To the approximation of the linear theory of 
mass transport 03 = 0 [ii]. 

Thesolution of the problem (17)-(21) makes it possible to determine the Sherwood num- 
ber from Eq. (14), which in terms of the new variables has the form 

gh=-- V ~e dX, ,Y~ = 
\ o r  ) ~=o b 

( 2 3 )  

In the case of a highly soluble gas, when the process is limited by mass transport 
in the gas phase, the parameters ~ and fi0 in Eqs. (17)-(21) are practically equal to zero. 
If ~ = 60 = 0 is substituted into Eqs. (17)-(21), it follows directly from Eq. (19) that 
C m 0, and in Eq. (18) it is necessary to substitute 

~* V ~obt ( o c )  , Oo= 
o, \ ~ ] y = .  \ oY 1~=o ho~op~ 

using the condition for the continuity of the mass flux through the phase interface. In 
this approximation the system of equations (17), (18), (20), and (21) can be broken down 
into two apparently independent problems for the liquid and the gas. 

Velocity Distributions and Thicknesses of the Films. The velocity distribution in the 
film is determined directly from Eq. (17): 

I := 2 -4- 3H --[- 02 ~ "7=o 

V = ~  I 3H' + 0, 
2 

(24) 

The film thickness is found from Eq. (18) after the substitution of Eq. (24): 

L ' a C  ) /-/3=1 10o(OU ) H2--0o% ! ( ~=o - T "  -W- dx. (25) 

The final expressions for determining the velocity (Eq. (24))and the film thickness 
(Eq. (25)) are obtained after solving Eqs. (20) and (21). 

Velocity and Concentration Distributions in the Gas. In Eq. (24) 92 is a small param- 

eter, i.e., it is possible to substitute U in the zeroth approximation with respect to e=. 
This makes it possible to solve Eq. (20) to the zeroth approximation with respect to 02. 
For this purpose it is necessary to substitute into Eq. (20) U(X, H) to the zeroth approxima- 
tion with respect to the small parameter 02, i.e., 

3 
U (X, m - - -  ( 2 6 )  

2 

This relationship is obtained from Eqs. (24) and (25) if 82 = 0 is substituted. 

The velocity and concentration distributions in the gas are obtained from Eq. 
and (21) by means of the self-similarity variables 

(20) 
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1 e 1 
so,', v - - -  (no" - -  r  

2 2 V ~ -  

? 

2 w - '  
Thus, it follows directly from Eqs. (20) and (21) that 

1 
cD'" q- q)cl)" = O, ~"  q- e ~ '  = O, 

8 

r  % ,F'(o), r  3o~, o ' (oo) -  2 ,  
g 8 8 

( 2 7 )  

The rate of mass transport is determined by the Sherwood number from Eq. (23). In 
terms of the new variables this expression assumes the form 

~h - 1/ff~-~ ~, (0), 
p~ 

w h e r e  9 ' ( 0 )  i s  f o u n d  f r o m  t h e  s o l u t i o n  o f  t h e  p r o b l e m  ( 2 7 ) .  T h i s  s o l u t i o n  was  f o u n d  b~ 
n u m e r i c a l  m e a n s  f o r  r = 1 a n d  v a r i o u s  v a l u e s  o f  t h e  p a r a m e t e r s  e 1 a n d  O 3 ( s e e  F i g .  1 ) .  

(28) 

Conclusions. The results which have been obtained show that the rate of mass transport 
depends significantly on the direction of mass transfer. In cases of the absorption of 
highly soluble gases with large concentration gradients the rate of mass transport exceeds 
the rate of desorption. This effect cannot be predicted from the linear theory of mass 
transport. 

The kinetics of nonlinear mass transfer depend significantly on the Schmidt number 
in the gas phase (s), i.e., it is necessary to solve the problem (27) for each specific 
case. Finding this solution is made difficult as the result of the presence of boundary 
conditions at infinity. It is therefore expedient to find an asymptotic solution of the 
problem (27) using the condition that the parameters 81 and 83 are small for cases of practi- 
cal interest. 

NOTATION 

c, concentration; c*, concentration at phase interface; D, diffusion coefficient; ~, 
acceleration of free fall; h, film thickness; h0, film thickness according to Nusselt theory; 
I, local mass flux; J, rate of mass transfer; k, mass transfer coefficient; Z, length of 
film; M, molecular mass; u, longitudinal component of velocity; v, transverse component 
of velocity; x, longitudinal coordinate; y, transverse coordinate; v, kinematic coefficient 
of viscosity; P0, density of pure liquid; p* = P0* + Mc*, density of solution of liquid 
at phase interface; X, Henry's constant. 

SUBSCRIPTS AND SUPERSCRIPTS 

~, denotes quantity in gas; 0, characteristic values of quantities in liquid and gas; 
' " "' derivative functions. 
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TWO-PHASE MULTICOMPONENT MASS TRANSPORT IN A DESCENDING, 

STRAIGHT-THROUGH FLOW OF PHASES 

E. Ya. Kenig and L. P. Kholpanov UDC 536.24.532.529.5.001.24 

The parameters of combined, multicomponent mass transport in a two-phase gas 
(vapor)-liquid system moving as a descending, laminar straight-through flow 
are investigated theoretically, and methods for calculating them are proposed. 
The methods are based on solving the system of differential equations for multi- 
component convective diffusion in both phases with an allowance for the conjuga- 
tion conditions at interface. The diffusion equations are solved both numerically 
and analytically in the boundary-layer approximation. The development of the 
process over large "lengths of the contact device is investigated, and the 
asymptotic values of the component concentrations are determined. 

Modern theory and industrial practice require adequate methods for investigating and 
calculating complex mass-exchange processes. The development of such methods, in turn, 
requires the tool of differential equations of convective mass transport [i]. When used 
for the description of multicomponent systems, these equations are characterized by matrix 
vectors and a conjugate form, which makes their solution difficult. For two-phase, multi- 
component systems, the solution becomes considerably more complex, since the matrix conjuga- 
tion equations which relate the component concentrations of both phases at the interface 
also have a conjugate character. 

The present article presents a theoretical investigation of the mass-exchange process 
in a multicomponent, gas-liquid mixture, based on solving the system of differential equa- 
tions of multicomponent convective diffusion in conjugate form. 

Consider an n-component mixture moving in a rectangular channel as a descending, 
straight-through flow of phases. The x axis is oriented along the channel axis, while the 
y axis is perpendicular to it (Fig. i). We make the usual assumptions [2-4]: The physical 
characteristics of the phases are constant, external forces are absent, phase equilibrium 
conditions prevail at the interface, and the thickness of the liquid film is constant. Then, 
the equations of convective, multicomponent diffusion are given by 

u~(y) ac~ = [D~] a2c-~, �9 
�9 ax  ay~ " ( i )  

OCg 02Cg 
Ox Og 2 '  

while the boundary conditions are assigned by the following relationships: 

at the channel inlet, 

(2) 

x=0, C~=Cos Cg=C0g; 

at the channel wall (impenetrability condition), 

(3) 
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